Estimate on the Dimension of Global Attractor for Nonlinear Higher-Order Coupled Kirchhoff Type Equations
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Blow up of Solutions for a System of Nonlinear Higher-order Kirchhoff-type Equations
In this work, we consider the initial boundary value problem for the Kirchhoff-type equations with damping and source terms utt +M (∫ Ω ∣∣∣(−△)m2 u∣∣∣2 dx) (−△) u+ |ut| ut = f1 (u, v) , vtt +M (∫ Ω ∣∣∣(−△)m2 v∣∣∣2 dx) (−△) v + |vt| vt = f2 (u, v) in a bounded domain. We prove the blow up of the solution with positive initial energy by using the technique of [26] with a modification in th...
متن کاملDimension Estimate for the Global Attractor of an Evolution Equation
and Applied Analysis 3 In 15 the asymptotic behavior of 1.1 was studied and it was proven the existence of a global attractor for the semigroup associated to 1.1 , that is, the semigroup of operators defined as S t : u0 ∈ H −→ u t ∈ H, 1.4 The main tool in proving the existence of a global attractor is to show the existence of an absorbing set inH2 I see Theorem 1.1 in 1 . Theorem 1.1 see 15 . ...
متن کاملNew existence results for a coupled system of nonlinear differential equations of arbitrary order
This paper studies the existence of solutions for a coupled system of nonlinear fractional differential equations. New existence and uniqueness results are established using Banach fixed point theorem. Other existence results are obtained using Schaefer and Krasnoselskii fixed point theorems. Some illustrative examples are also presented.
متن کاملOn the Cauchy problem for higher-order nonlinear dispersive equations
We study the higher-order nonlinear dispersive equation ∂tu+ ∂ 2j+1 x u = ∑ 0≤j1+j2≤2j aj1,j2∂ j1 x u∂ j2 x u, x, t ∈ R. where u is a real(or complex-) valued function. We show that the associated initial value problem is well posed in weighted Besov and Sobolev spaces for small initial data. We also prove ill-posedness results when a0,k 6= 0 for some k > j, in the sense that this equation cann...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Pure Mathematics
سال: 2018
ISSN: 2160-0368,2160-0384
DOI: 10.4236/apm.2018.81002